

WESSLING Consulting Engineering GmbH & Co. KG Oststraße $6\cdot48341$ Altenberge www.wessling.de

Bericht

Berechnung der Ökobilanz für Fassadenelemente Litho-Stone

Projekt-Nr: EAL-23-0393
Auftrags-Nr: EAL-00205-23

Auftraggeber: Lithodecor Fassaden GmbH

Mylauer Straße

08491 Netzschkau

Auftragsdatum: 03.03.2023

Projektleiter: Bastian Bartsch

B. Sc. Wirtschaftsingenieurwesen Chemie-

technik

Altenberge, 18.10.2023

WESSLING Consulting Engineering GmbH & Co. KG Oststraße $6 \cdot 48341$ Altenberge www.wessling.de

EAL-00205-23 / Lithodecor Fassaden GmbH / Berechnung der Ökobilanz für Fassadenelemente 13.03.2023 / bnb_wce / Seite 2 von 5

Ziel der Studie und Durchführung

Die *Lithodecor Fassaden GmbH* möchte ihrer ökologischen Verantwortung nachkommen und zielt auf eine nachhaltigere Ausrichtung der Produktionsprozesse ab. Des Weiteren bekommt die *Lithodecor Fassaden GmbH* immer mehr Anfragen von Kunden die Produkte ökobilanziell auszuweisen. Die Ökobilanzen dieser Produkte sollen zudem verwendet werden um an Ausschreibungen teilzunehmen.

Deklarierte Einheit

Die deklarierte Einheit der Studie ist 1 m² Fassadenelement *Litho-Stone* aus der Produktion am Standort in Netzschkau.

Produktbeschreibung

Bei dem Fassadenelement *Litho-Stone* handelt es sich um ein Leichtbauelement bestehend aus einer Leichtbetonplatte mit Aluminiumhalterungen, die für den optischen Abschluss mit einer Natursteinplatte verklebt wird.

Systemgrenze

Bei der vorliegenden Studie handelt es sich um eine cradle-to-gate-Betrachtung.

Strommix

Zur Darstellung des elektrischen Energieflusses wurde der für das Referenzjahr 2020 relevante Strom-Mix für Deutschland verwendet.

<u>Abschneidekriterien</u>

Die Keramikhalterungen wurde aufgrund der geringen Einsatzmenge und der Tatsache, dass kein geeigneter Datensatz in der Modellierungs-Software gefunden werden konnte, in der Studie nicht berücksichtigt.

Allokationen

In der betrachteten Ökobilanz-Studie wurde keine Allokations-Methode angewendet.

Datenqualität

Die Datenqualität ist allgemein als sehr gut zu beschreiben und erfüllt die Anforderungen hinsichtlich der Zielsetzung der vorliegenden Studie.

WESSLING Consulting Engineering GmbH & Co. KG Oststraße $6 \cdot 48341$ Altenberge www.wessling.de

EAL-00205-23 / Lithodecor Fassaden GmbH / Berechnung der Ökobilanz für Fassadenelemente 13.03.2023 / bnb_wce / Seite 3 von 5

Berechnungsmethode, Methode der Auswertung

Die Verarbeitung der in der Studie erhobenen Daten erfolgte mit Hilfe der *LCA for experts* Software des Herstellers *Sphera*.

Für die quantitative Aggregation der Sachbilanzdaten im Hinblick auf deren Umweltwirkungen wurde die *EN15804+A2* -Methode verwendet.

Ergebnisse der Ökobilanz

Kategorie	Einheit	Rohstoffe A1	Transport A2	Produktion A3	Gesamt		
Umweltwirkungsindikatoren							
Klimawandel - total	kg CO ₂ - Äquiv.	13,01	4,03	22,89	39,94		
Klimawandel - fossil	kg CO ₂ - Äquiv.	12,84	4,05	22,70	39,58		
Klimawandel - bio- gen	kg CO ₂ - Äquiv.	0,17	-0,04	0,19	0,32		
Klimawandel, Landnutzung und Landnutzungsän- derung	kg CO₂- Äquiv.	3,94E-03	3,16E-02	2,99E-03	0,04		
Ozonabbaupoten- tial	kg CFC-11- Äquiv.	5,76E-11	4,91E-10	4,32E-10	4,90E-10		
Versauerungspo- tential	Mol H+- Äquiv.	3,07E-02	2,02E-02	2,67E-02	7,76E-02		
Eutrophierung, Frischwasser	kg P- Äquiv.	4,74E-05	1,25E-05	7,87E-05	1,39E-04		
Eutrophierung, ma- rine Ökosysteme	kg N- Äquiv.	6,95E-03	9,70E-03	9,45E-03	2,61E-02		
Eutrophierung, ter- restrische Ökosys- teme	Mol N- Äquiv.	7,49E-02	0,11	0,10	0,28		
Fotochemisches Ozonbildungspo- tenzial, menschl. Gesundheit	kg NMVOC- Äquiv.	2,17E-02	1,91E-02	2,40E-02	6,48E-02		
Ressourcenver- brauch, Mineralien und Metalle	kg Sb- Äquiv.	1,07E-06	2,59E-07	2,70E-06	4,03E-06		
Ressourcenver- brauch, fossil	MJ	198,34	55,09	353,83	607,25		
Wassernutzung	m³ Weltäquiv.	0,56	0,04	0,42	1,02		

WESSLING Consulting Engineering GmbH & Co. KG Oststraße $6\cdot48341$ Altenberge www.wessling.de

EAL-00205-23 / Lithodecor Fassaden GmbH / Berechnung der Ökobilanz für Fassadenelemente 13.03.2023 / bnb_wce / Seite 4 von 5

Ressourcennutzungsindikatoren							
Verbrauch von er- neuerbarer Primär- energie (PERE)	MJ	31,20	3,61	195,11	229,91		
Primärenergie zur stofflichen Nutzung (PERM)	MJ	0,00	0,00	0,00	0,00		
Gesamtverbrauch von erneuerbarer Primärenergie (PERT)	MJ	31,20	3,61	195,11	229,91		
Verbrauch von nicht-erneuerbarer Primärenergie (PENRE)	MJ	198,46	55,19	353,90	607,55		
Nutzung nicht er- neuerbarer Primär- energieressourcen als Rohstoffe (PENRM)	MJ	0,00	0,00	0,00	0,00		
Gesamtverbrauch von nicht-erneuer- barer Primärener- gie (PENRT)	MJ	198,46	55,19	353,90	607,55		
Input von Sekun- därwerkstoffen (SM)	kg	0,00	0,00	0,00	0,00		
Verbrauch ern. Se- kundärbrennstoffe (RSF)	MJ	0,00	0,00	0,00	0,00		
Verbrauch nicht ern. Sekun- därbrennstoffe (NRSF)	MJ	0,00	0,00	0,00	0,00		
Frischwasserver- brauch (FW)	m ³	3,11E-02	3,77E-03	6,08E-02	9,57E-02		
Outputflüsse und Abfallkategorien							
Gefährlicher Abfall zur Beseitigung (HWD)	kg	1,27E-08	1,94E-10	-5,00E-10	1,24E-08		
Ungefährlicher Abfall zur Beseitigung (NHWD)	kg	0,99	7,88E-03	13,04	14,04		
radioaktiver Abfall zur Beseitigung (RWD)	kg	3,09E-03	6,65E-05	1,76E-02	2,08E-02		

WESSLING Consulting Engineering GmbH & Co. KG Oststraße $6\cdot48341$ Altenberge www.wessling.de

EAL-00205-23 / Lithodecor Fassaden GmbH / Berechnung der Ökobilanz für Fassadenelemente 13.03.2023 / bnb_wce / Seite 5 von 5

Komponenten für Wiederverwendung (CRU)	kg	0,00	0,00	0,00	0,00
Stoffe zum Recyc- ling (MFR)	kg	0,00	0,00	0,00	0,00
Stoffe für die Ener- gierückgewinnung (MER)	kg	0,00	0,00	0,00	0,00
Exportierte Energie elektrisch (EEE)	MJ	0,00	0,00	0,00	0,00
Exportierte Energie thermisch (EET)	MJ	0,00	0,00	0,00	0,00

Matthias Mundt

Fachwissenschaftler für Toxikologie Fachleiter Toxikologie und Chemikalienrecht

Bastian Bartsch

B. Sc. Wirtschaftsingenieurwesen Chemietechnik Projektleiter